California URGENT CARE ASSOCIATION 2025 WESTERN REGIONAL URGENT CARE CONFERENCE

Antibiotic Stewardship Programs

Reducing Resistance and Enhancing Outcomes in Urgent Care

Steven Goldberg, MD, MBA Clinician, UofL Health, Louisville, KY Chief Medical Officer, HealthTrackRx

Agenda

- Program Resources
- Scope of Challenge
- Respiratory Illness
- Adult Bronchitis
- Pediatric Pneumonia
- ASP Program Implementation
- Clinician Perspective
- Wrap Up

Stewardship Strategies in Urgent Care [3,5,6]

Audience Question Does your practice have a formal antibiotic stewardship program?

- A. All components
- **B.** Most components
- **C.** Some components
- D. No

- Clinician & patient education
- EHR decision support with best-practice alerts
- Audit & feedback, peer benchmarking
- Public commitment posters
- Pharmacist- & lab-led stewardship interventions

Antibiotic Stewardship Resources

Antibiotic Stewardship

Core Elements of Outpatient Antibiotic Stewardship | Antibiotic Prescribing and Use | CDC [2,4]

Antibiotic Stewardship – CA Focus

California requires hospitals and SNFs to adopt stewardship programs Urgent care centers are not yet mandated

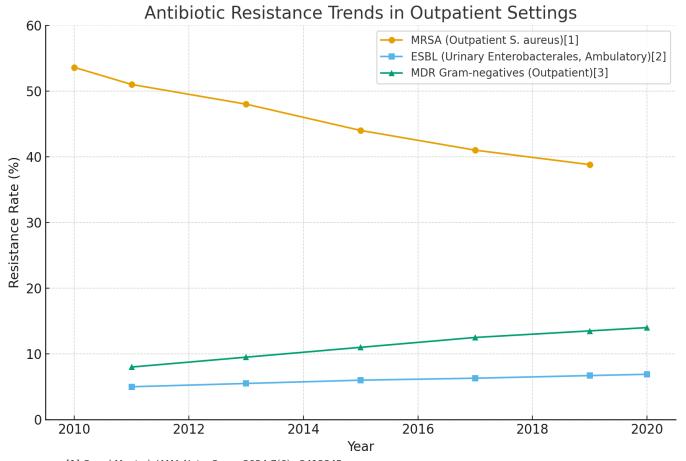
CDPH (CA Department of Public Health) developed a stewardship toolkit with IEHP (Inland Empire Health Plan) targeting outpatient & urgent care settings

LA County launched initiatives (e.g., TAP OUT – **T**argeting **A**ppropriate **P**rescribing in **O**utpatient **S**ettings) to reduce inappropriate prescribing

California-Specific Action Points for UC Centers

Action Steps to Consider – CA Urgent Care Centers

Adopt Voluntary Stewardship Protocols	Align with CDC Core Elements of Outpatient Stewardship
Use California-Endorsed Toolkits	CDPH/IEHP Toolkit; handouts, decision aids, HER prompts
Engage with Local Public Health	County-level support for TAP OUT participation
Track Prescribing Metrics	Monitor prescribing rates and identify improvement areas


CDPH & IEHP. Antibiotic Stewardship Toolkit. Mar 2025. https://cdph.ca.gov/.../CDPH_IEHP_CoreToolkit.pdf

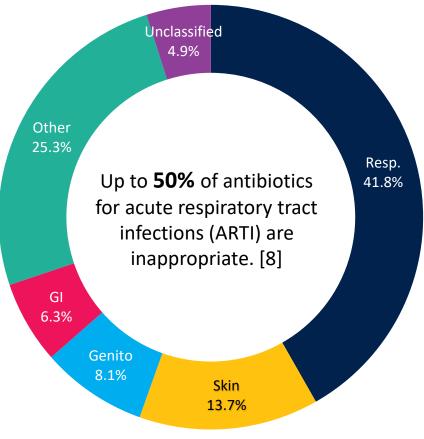
LA Co. TAP OUT Playbook. https://publichealth.lacounty.gov/acd/docs/TAPOUT_Playbook.pdf

Scope of the Problem

- Over-prescribing of antibiotics by 30% and for respiratory complaints 50% [1,2]
- **Resistance trends**: MRSA, ESBL, multidrug-resistant Gram-negatives [1]
- Patient impact: increase C. difficile, resistant infections, adverse drug events, hospitalizations [13]
- **System impact** (CDC): 2.8 million resistant infections, 35,000 U.S. deaths and \$4.6 billion in avoidable expense due to six most common pathogens [4]

- [1] Carrel M, et al. JAMA Netw Open. 2024;7(6):e2412345.
- [2] Dunne MW, et al. BMC Infect Dis. 2022;22:731.
- [3] Representative surveillance data; see CDC AR Threats Report 2019.

Respiratory Illness in Urgent Care


Acute Bronchitis Incidence (Community-Level, U.S.) ~5% of U.S. adults experience acute bronchitis annually. [9]

Acute respiratory infections represent a significant public health concern [5]

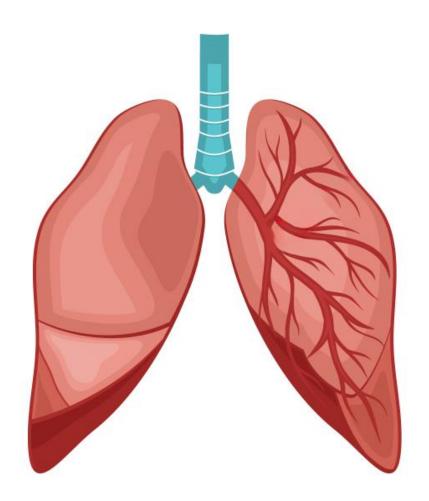
- **Deaths:** 13.6 deaths per 100,000 people in U.S.
- **Disability:** 384.9 disability-adjusted life years per 100,000 people in U.S.
- Costs: \$8.0 billion annually in the U.S

Most common clinical category for UC encounters:

**2019 data (not skewed based on COVID public health emergency) [6,7]

ASP Implementation Barriers [6,19.20]

- Limited UC lab infrastructure
- Provider habits & resistance to change
- Workflow integration challenges
- Cost of rapid tests & resources


Audience Question [9]

How often do you prescribe antibiotics for acute bronchitis without COPD?

- A. "Average" (30% 50%)
- B. Selectively (< 25%)
- C. Infrequently (< 10%)
- D. Never (<5 %)

Evaluation of Acute Bronchitis in Adults [9]

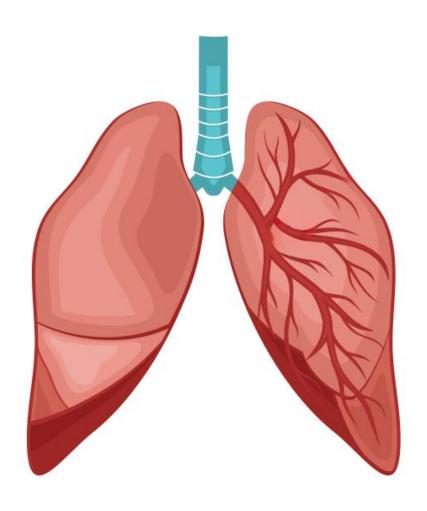
Features

- Patient without COPD
- Acute onset
- Persistent cough
- 5 days to 3 weeks
- With or without sputum
- Current or recent URI
- May have wheeze or dyspnea

Concern for Pneumonia

- Temperature > 100.4
- Pulse > 100
- Respiratory > 22
- Hypoxia (< 95%)
- Rales, egophony, and tactile fremitus
- Consolidation on CXR
- Altered mental status > 75

POC Diagnostic Insights


- Influenza A/B
- Persistent cough
- COVID-19
- RSV
- Other causes (HF, GERD, postnasal drip, ACE inhibitor, other)

Send out

Bronchitis: Without COPD – Antibiotics?

- X Routine acute bronchitis (healthy adults/children):
 - Antibiotics NOT indicated (>90% viral)
- Indications:
 - Suspected/confirmed pertussis (macrolide)
 - Misdiagnosed pneumonia (fever, focal findings, CXR infiltrate)
 - Frail elderly, immunocompromised, or high-risk patients (case-by-case)
- X Purulent sputum alone is NOT an indication

References: ACP/CDC 2016; IDSA/ATS CAP 2019; CDC Pertussis Guidelines

Brief: Pediatric Respiratory Illness [10,11,12]

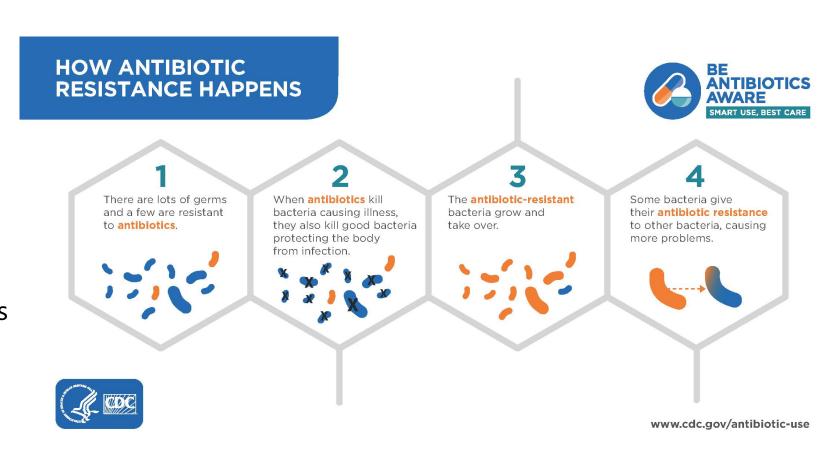
Feature	Bronchiolitis	Bronchitis	Pneumonia (Pediatric)	
	Infants <2 years (peak <12 months)	Older children, teens, adults	Viral is more common in <5 yrs	
Site of inflammation	Small airways (bronchioles)	Larger bronchi	Alveoli and lung parenchyma	
Main cause	RSV, other viruses	Viruses (influenza, rhinovirus), rarely bacteria	Viruses "70%" (RSV, human metapneumovirus, influenza virus, parainfluenza virus, and rhinovirus) or Bacteria 15% (S. pneumoniae, H. influenzae, Mycoplasma)	
Symptoms	Wheezing, tachypnea, retractions, hypoxemia, crackles	Cough ± sputum, mild wheeze/rhonchi, no major hypoxemia	Fever, cough, tachypnea, localized crackles, decreased breath sounds, hypoxemia	
Severity	Can be severe; hospitalization sometimes needed	Usually mild, self-limited	Mild to severe; can be life- threatening in infants/young children	
Treatment	Supportive care; no proven role for bronchodilators/steroids	Supportive care; antibiotics rarely used	Supportive; antibiotics if bacterial; oxygen, fluids if severe	

Pediatric Stewardship

Common Causes of Pneumonia in Children (0–18 years)_[10]

Preschool (3 months – 5 years):

- **Predominantly viral (60-80%):** RSV, influenza, rhinovirus, parainfluenza, adenovirus, human metapneumovirus
- **Bacterial (less common):** *Streptococcus pneumoniae, Haemophilus influenzae type b* (rare where vaccinated), *Staphylococcus aureus*


School-Age (5–18 years):

- **Viral (30-50%):** Influenza, adenovirus, rhinovirus, RSV (less frequent with age)
- **Bacterial:** *Mycoplasma pneumoniae* (especially 5–17 years), *Streptococcus pneumoniae*, *Chlamydophila pneumoniae*
- Others (adolescents): Less common but possible *Staphylococcus aureus* (including MRSA) post-influenza

- Children disproportionately prescribed antibiotics for viral illnesses [5,10,11]
- Protocols improve antibiotic choice, dose, duration [5]
- Satisfaction and safety preserved

Patient Communication: "Why not antibiotics" [16]

- Explain the 'why not' when withholding antibiotics
- Clear viral vs bacterial explanations maintain satisfaction
- Shared decision-making & reassurance reduce return visits

Components for Success in Antibiotic Stewardship

- Leadership commitment & organizational buy-in [19,20]
- Multidisciplinary collaboration: providers, pharmacists, nurses
- Technology support: EHR prompts, benchmarking dashboards
- Implementation science: frameworks sustain adoption [21]

Audience Question [6]

Where is antibiotic stewardship for respiratory complaints prioritized in your organization?

High Medium Low

Recent publication – Multisite, Urgent Care ASP initiative

Urgent Care Antibiotic Stewardship (Multi-Network Collaborative)

Setting: 49 urgent care centers across 27 networks in 18 U.S. states (incl. 1 telemedicine site).

Population: Urgent care clinicians (MD/DO/APP) treating bronchitis or viral URTIs; ~15k encounters analyzed.

Timeframe: Baseline 3 mo (Sep–Nov 2022); Intervention 9 mo (Dec 2022–Aug 2023).

Key findings among actively engaged clinicians:

~48% relative decrease in inappropriate antibiotics for bronchitis (aOR \approx 0.52; 95% CI 0.33–0.83).

~33% relative decrease for viral URTIs (aOR \approx 0.67; 95% CI 0.55–0.82).

Non-actively engaged clinicians showed no significant change.

Intervention Components & Participation

- **Commitment Statement**: Clinicians signed an urgent-care antibiotic stewardship pledge.
- **PDSA cycles**: Three Plan-Do-Study-Act cycles with site-selected tactics (5 option categories).
- Options included: patient-education handouts; patient-engagement aids (videos/letters); clinician education (webinars); treatment guidelines/protocols; signage/social-media messaging.
- **Active engagement**: regular webinar participation, monthly feedback reports, and data submission.
- **Measurement**: outcomes stratified by diagnosis (bronchitis vs viral URTI) and by engagement level.
- Incentive: Maintenance of Certification Credits

Antibiotic Stewardship Programs – Closing Performance Gaps [22,24,25,26,27]

Components of Successful Clinician Programs

Prospective Audit & Feedback

To review antibiotic prescriptions and provide feedback to prescribers in real-time.

Preauthorization

For approval before certain antibiotics can be prescribed.

Guideline Development & Implementation

Tailored to local resistance patterns.

Education & Training

For healthcare providers through formal training sessions, academic detailing, and informal rounds.

Computer-Assisted Decision Support

To provide real-time guidance on antibiotic prescribing.

Antibiotic Time-Outs

To reassess ongoing antibiotic therapy to ensure its continued appropriateness.

Gaps remain

Antibiotic stewardship programs were associated with a:

- 10% reduction in antibiotic prescriptions
- 28% reduction in antibiotic consumption

Yet, overprescribing still exists despite programs

This raises the opportunity for further improvement

Shared decision-making based on test insights provides an opportunity to inform treatment planning

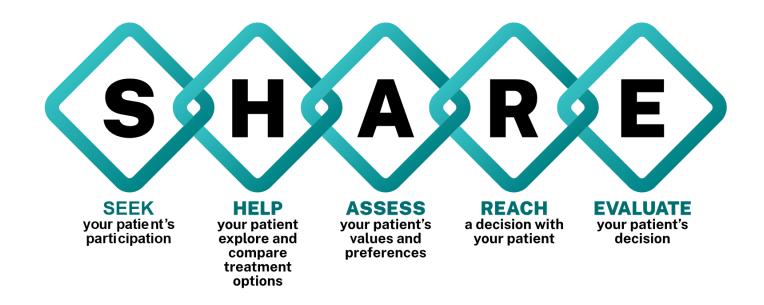
Molecular testing can be seen at a part of a "continuum" of ASP*

Evidence of Effectiveness of Antibiotic Stewardship Programs [6,17,19,20,22,24,25,26,27]

- Urgent Care ASPs reduce prescribing 15–22%
- Not correlated with an increase in ED visits or hospitalizations
- Pharmacist-led programs improve concordant therapy
- Patient satisfaction stable or improved

Diagnostics in ASP: Comparing Outpatient Infectious Disease Techniques

Option	Diagnostic Test	Pros	Cons	Common Use Cases
	Direct Visualization (Wet Prep)	Result in minutesLowest cost	 Low sensitivity Inefficient time and equipment requirement 	Bacterial vaginosisTrichomonasCandidiasis
	 Antigen Testing Result in minutes Can support treatment decisions during patient visit 	Variable Sensitivity & SpecificityOnly available for select pathogens	InfluenzaCOVIDRSVGroup A Strep	
Direct Testing	Molecular Testing	Highly Sensitive & SpecificResults in minutes to hoursPOCSend Out	 Can be more costly Requires clinician understanding of syndrome specific infections 	RespiratoryVaginitisSTIsGIOther
	Culture	 Unbiased detection Antibiotic susceptibility testing Supported by guidelines	 Results in 3+ days Prone to contamination Requires multiple transport medias 	UTIWoundBlood
Indirect Testing	Antibody testing (IgG, IgM)	Highly sensitive & specificCan inform prior exposure	Results in daysNot always indicative of active infections	HIVSyphilis


Diagnostics in Antibiotic Stewardship: Part of the Continuum [19]

- Rapid identification of pathogens enables targeted therapy
- Reduces unnecessary broad-spectrum antibiotic use
- Improves clinical outcomes by guiding appropriate treatment
- Supports de-escalation of antibiotics when results available
- Enhances surveillance of resistance patterns
- Cost savings through reduced treatment failures and hospitalizations

Shared Decision-Making [14,15,16]

- 1. Clarity in Diagnosis
- 2. Strengthening Trust
- 3. Address Concerns
- 4. Drive Evidence-Based Solutions [17,18,19]

The SHARE Approach | Agency for Healthcare Research and Quality

Shared Decision-Making [14,15,16]

- For example, this diagnostic results confirm a viral infection.
- A specific pathogen (e.g., adenovirus) is identified
- Based on this, antibiotics are not indicated
- The patient can be advised on symptom treatment and supportive care.
- This approach of leveraging diagnostic findings in a shared decision-making conversation can prevent antibiotic misuse, which helps combat resistance, a growing public health crisis! [13]

CLIA# 15D2267792 706 E Lewis and Clark Plovy Clarksville, IN 47129-2245, US Clinical Expert Line: 940-383-2223

MOLECULAR PATHOLOGY REPORT

We value your feedback! Please take our brief survey

FACILITY INFORMATION

Facility Name: HealthTrackRx of Louisville Provider Name: PHYSICIAN DEMONSTRATION

NPI: 100000000

Address: 706 E Lewis and Clark Plovy Clarksville, IN 47129

PATIENT INFORMATION Name: HTRXTEST, DEMO

Gender at Birth: Female Address: 1500 Interstate 35 W Denton, TX 76207, Denton, US Phone: (877) 888-8999

Races Unknown Ethnicity: Unknown

SPECIMEN INFORMATION Lab Accession Number: 12060486 Date Collected: 04/26/2025

Date Received by Lab: 04/28/2025 Date Reported: 04/28/2025 Sample Type: Respiratory Tract

Area of Interest: NASOPHARYNGEAL/NARES Cross Reference #1

Order Categorys Extended Respiratory

Extended Respiratory Viral/Acute Rhinosinusitis Pathogens

Viral Pathogens

Microbial Load*

Detected

Detected

D ASSAY RESULTS

ested microbe-related and resistance gene results (see below) are NOT DETECTED (NEGATIVE), unless indicated as DETECTED (POSITIVE), in above ected Results Summary section.

Adenovirus

COVID-19 Coronavirus (SARS-CoV-2)

Human metapneumovirus

Parainfluenza virus (PIV types 1, 2, 3, 4).

Rhinovirus/Enterovirus

Coronaviruses (229E, NL63, HKU1, OC43)

Enterovirus D68

Influenza virus A, 8

Respiratory syncytial virus

Kaitlyn Cass Analyzed by: Date: 04/28/2025 09:08

Beal-Time polymerane chain reaction: (TagMan qPCR) was utilized for detection for all tested organisms and resistance genes. Initiation of antimicrobial therapy prior to testing may affect results and can lead to the detection of non-fiving microorganisms. Detection of microbes must be correlated with current/records at this lab. Crt to CPU/mL, equivalent thresholds were established based on studies using known CPU/mL, usine specimens performed at this lab. Crt to CPU/mL equivalent thresholds were established based on studies using known CPU/mL, usine specimens performed at PestalhifrackRs, in Denton, TX. Testing performed by HealthifrackRs of Louisville (706 E Lewis) and Clark Peavy, Clarksville, IN 47125, CLUM 1502267792, Lab Devector Jesisca Moyo, PRD, HCDARSI). This test was developed, and its performance characteristics determined by HealthifrackRs. It has not been deared or approved by the PDA. However, such approved/detrained in or required, as the laboratory is regulated under CLIA to under rompleasity testing. This test is used for clinical

pproximate copies of target nucleic acid per µL (Low: <2,500 copies/µL, Moderate: 2,500-50,000 copies/µL, High: >50,000 copies/µL National Infectious Disease Consensus Data

**Potentially effective oral antibiotics, based on presence of detected microbes, antimicrobial resistance genes, and national antimicrobial sensitivity data

Future Directions [29,30]

- Point-of-care molecular & host-response diagnostics [29,30,31]
- Al-driven EHR decision support
- Expanded quality metrics & public reporting
- Integration with telehealth & home testing kits

Summary

- UC is a frontline battleground for stewardship.
- Multifaceted programs reduce resistance & costs [6].
- Education + diagnostics + communication = safe, sustainable care.
- Antibiotic stewardship in urgent care is achievable and impactful.
- Combine education, decision support, diagnostics, and communication strategies in a programmatic intervention.
- Urgent care centers can reduce resistance, improve patient safety, and preserve antibiotic effectiveness. [7,8,26]

Take Home Points

- Antibiotic Resistance is a major clinical problem
- Stewardship of antibiotics is an effective strategy
- Programmatic approaches can be effective
- Diagnostic Testing is part of the solution continuum
- Shared Decision-Making is an effective tool at the clinician-patient level [14,15,16]

Q&A

References

- 1. Fleming-Dutra KE, Hersh AL, Shapiro DJ, et al. Prevalence of inappropriate antibiotic prescriptions among US ambulatory care visits, 2010-2011. *JAMA*. 2016;315(17):1864-1873. doi:10.1001/jama.2016.4151
- 2. Centers for Disease Control and Prevention. Outpatient antibiotic prescribing in the United States: data by setting. CDC. Published 2023. Accessed September 15, 2025. https://www.cdc.gov/antibiotic-use/hcp/data-research/antibiotic-prescribing.html
- 3. Sanchez GV, Fleming-Dutra KE, Roberts RM, Hicks LA. Core elements of outpatient antibiotic stewardship. *MMWR Recomm Rep.* 2016;65(6):1-12. doi:10.15585/mmwr.rr6506a1
- 4. Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2019. CDC. Published December 2019. Accessed September 15, 2025. https://www.cdc.gov/drugresistance/biggest-threats.html
- 5. Cui J, Zhang Y, Xu M, et al. Global burden of acute respiratory infections: incidence, mortality, and attributable risk factors, 1990-2019. *Front Med*. 2024. doi:10.1007/s11684-024-1135-8. PMID:38818396
- 6. Stenehjem E, Hyun DY, Septimus E, et al. Antibiotic stewardship in small hospitals: barriers and opportunities. *Clin Infect Dis*. 2019;69(6):991-996. doi:10.1093/cid/ciy1046
- 7. Urgent Care Association. 2023 urgent care industry white paper. Published 2023. Accessed September 8, 2025. https://urgentcareassociation.org/wp-content/uploads/2023-Urgent-Care-Industry-White-Paper.pdf
- 8. Urgent Care Association. Urgent care data. Accessed September 8, 2025. https://urgentcareassociation.org/about/urgent-care-data/
- 9. Albert RH. Diagnosis and treatment of acute bronchitis. Am Fam Physician. 2010;82(11):1345-1350. PMID:21121518
- 10. Bradley JS, Byington CL, Shah SS, et al. The management of community-acquired pneumonia in infants and children older than 3 months of age: clinical practice guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America. Clin Infect Dis. 2011;53(7):e25-e76. doi:10.1093/cid/cir531

References

- 11. Gerber JS, Jackson MA, Tamma PD, Zaoutis TE. Antibiotic stewardship in pediatrics. *Pediatrics*. 2021;147(1):e2020040295. doi:10.1542/peds.2020-040295
- 12. Jain S, Williams DJ, Arnold SR, et al. Community-acquired pneumonia requiring hospitalization among U.S. children. *N Engl J Med.* 2015;372(9):835-845. doi:10.1056/NEJMoa1405870
- 13. Baur D, Gladstone BP, Burkert F, et al. Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and *Clostridium difficile* infection: a systematic review and meta-analysis. *Lancet Infect Dis*. 2017;17(9):990-1001. doi:10.1016/S1473-3099(17)30325-0Alexander BD, Irish WD, Rosato AE, Eisenstein BI, Fragala MS, Goldberg SE, Nash DB. Is pathogen molecular testing reshaping outpatient antibiotic prescribing? Am J Med Qual. 2025;40(1):21-23. doi:10.1097/JMQ.000000000000132
- 14. Légaré F, Labrecque M, Cauchon M, Castel J, Turcotte S, Grimshaw J. Training family physicians in shared decision-making to reduce the overuse of antibiotics in acute respiratory infections: a cluster randomized trial. *CMAJ*. 2012;184(13):E726-E734. doi:10.1503/cmaj.120568
- 15. Coxeter P, Del Mar CB, McGregor L, Beller EM, Hoffmann TC. Interventions to facilitate shared decision making to address antibiotic use for acute respiratory infections n primary care. Cochrane Database Syst Rev. 2015;(11):CD010907. doi:10.1002/14651858.CD010907.pub2
- 16. Mangione-Smith R, McGlynn EA, Elliott MN, McDonald L, Franz CE, Kravitz RL. Parent expectations for antibiotics, physician-parent communication, and satisfaction. *Arch Pediatr Adolesc Med.* 1999;153(10):1093-1099. doi:10.1001/archpedi.153.10.1093
- 17. Krishnamoorthy Y, Govindan D, Karunakaran M, et al. Global impact of antimicrobial stewardship programs in healthcare: an umbrella review. *J Infect Chemother*. 025;31(8):102753. doi:10.1016/j.jiac.2025.102753
- 18. Zay Ya K, Win PTN, Bielicki J, et al. Association between antimicrobial stewardship programs and antibiotic use globally: a systematic review and meta-analysis. *JAMA Netw Open*. 2023;6(2):e2253806. doi:10.1001/jamanetworkopen.2022.53806
- 19. Ntim OK, Opoku-Asare B, Donkor ES. A systematic review of antimicrobial stewardship interventions in intensive care units. *J Hosp Infect*. 2025;162:272-283. doi:10.1016/j.jhin.2025.04.020
- 20. Barlam TF, Cosgrove SE, Abbo LM, et al. Implementing an antibiotic stewardship program: guidelines by IDSA and SHEA. *Clin Infect Dis*. 2016;62(10):e51-e77. doi:10.1093/cid/ciw118
- 21. Fixsen DL, Naoom SF, Blase KA, Friedman RM, Wallace F. *Implementation Research: A Synthesis of the Literature*. Tampa, FL: University of South Florida, Louis de la Parte Florida Mental Health Institute, The National Implementation Research Network; 2005.

References

- 22. Tamma PD, Miller MA, Dullabh P, et al. Association of a safety program for improving antibiotic use with outcomes in US hospitals. *JAMA Netw Open*. 2021;4(2):e210235. doi:10.1001/jamanetworkopen.2021.0235
- 23. Keller SC, Caballero TM, Tamma PD, et al. Assessment of changes in visits and antibiotic prescribing during the AHRQ Safety Program. *JAMA Netw Open*. 2022;5(7):e2220512. doi:10.1001/jamanetworkopen.2022.20512
- 24. Stenehjem E, Wallin A, Willis P, et al. Implementation of an antibiotic stewardship initiative in a large urgent care network. *JAMA Netw Open*. 2023;6(5):e2313011. doi:10.1001/jamanetworkopen.2023.13011
- 25. Patel D, Ng T, Madani LS, et al. Antibiotic stewardship in integrated academic health-system urgent care clinics. *Infect Control Hosp Epidemiol*. 2023;44(5):736-745. doi:10.1017/ice.2022.164
- 26. Laude JD, Kramer HP, Lewis M, et al. Implementing antibiotic stewardship in urgent care centers. *Jt Comm J Qual Patient Saf.* 2020;46(12):682-690. doi:10.1016/j.jcjq.2020.09.001
- 27. Puzniak LA, Gorski A, Haque NZ, et al. Pharmacist-led antibiotic stewardship programs in urgent care and outpatient settings: impact on prescribing and outcomes. *Infect Dis Ther*. 2022;11(3):953-967. doi:10.1007/s40121-022-00624-4
- 28. Van Houten CB, de Groot JAH, Klein A, et al. A host protein–based assay to differentiate between bacterial and viral infections in preschool children (OPPORTUNITY): a double-blind, multicentre validation study. *Lancet Infect Dis*. 2017;17(4):431-440. doi:10.1016/S1473-3099(16)30519-9
- 29. De Waele JJ, Boelens J. Antimicrobial stewardship and molecular diagnostics. *Curr Opin Crit Care*. 2024;30(3):231-238. doi:10.1097/MCC.000000000001154
- 30. Yadav K, Stahmer A, Mistry RD, May L. Implementation science approach to antibiotic stewardship in EDs and urgent care. Acad Emerg Med. 2020;27(1):31-42. doi:10.1111/acem.13873 [20,29]
- 31. Zakhour J, Haddad SF, Kerbage A, et al. Diagnostic stewardship in infectious diseases. *Int J Antimicrob Agents*. 2023;62(1):106816. doi:10.1016/j.ijantimicag.2023.106816
- Palms DL, Hicks LA, Bartoces M, et al. Comparison of antibiotic prescribing in retail clinics, urgent care centers, emergency departments, and traditional ambulatory care settings in the United States. *JAMA Intern Med.* 2018;178(9):1267-1269. doi:10.1001/jamainternmed.2018.1632

